
-A177 774 PARTITIONING PARALLEL PROGRAMS FOR NACRO-DATAFLORd) 1/1
STANFORD UNIV CA COMPUTER SYSTEMS LAB V SARKAR ET AL.
1986 MDA93-83-C-9335

UNCLASSIFIED F/G 9/2 NL

I EEEEEE

1.1 L 20

11111 1Aol

11111-5

MICROCOPY RESOLUTION TE ST CHsART
%A!,Nk - Pfa. I,- p - A

w~~4 w S 9 6 - A

$* %~~K~~.s/ . E 9\

Cont-ract MDA-903-83-C-0335

NPartitioning Parallel Programs for Macro-Dataflow
N D3TI C

0E L.ECT
Vivek Sarkar and John Hennessy MAR 5 1987N

S..Computer Systems Laboratory
Stanford University

Abstract trade-off between parallelism and the overhead of exploiting
Partitioning techniques are necessary to execute functional parallelism.
programs at a coarse granularity. Fine granularity execution In this paper, we present a compile-time partitioning
is inefficient on general purpose multiprocessors. There is a algorithm to partition program graphs into subgraphs that can
tradeoff between parallelism and the overhead of exploiting
parallelism. W -preset. a compile-time partitioning approach granu t y to e.ic iy i aptemin pralel aluation

granularity to efficiently implemitnt parallel evaluation
to achieve this trade-off. - - -.

models on multiprocessors. For convenience, we define a
macro-actor to be a dynamic invocation of a (static)

1. Introduction subgraph. A macro-actor's inputs and outputs are determined

Functional programs offer implicit parallelism at all levels, by the corresponding inter-subgraph input and output edges.
Data dependencies are their only sequencing onstraints. Our compile-time partitioning algorithm is driven by costs for

Several parallel evaluation models exist for functional execution times and communication sizes. We introduce a

languages, e.g. dataflow[8], graph reduction [17], simple analytical model and derive an objective function,

Concurrent Prolog [14]. These models define a granularity of F(l), that defines the cost of partition 17. The partitioning

parallelism at the finest level possible, e.g. instructions in algorithm attempts to build a partition with the smallest value

dataflow, combinators in graph reduction, goals in Concurrent of F(HT).5 Prolog. The enormous scheduling and communication The dataflow model is traditionally defined at the granularity
overhead incurred by fine grain parallelism has prompted of instructions or dataflow operators. With our compile-time
several implementers to attempt a coarser granularity. In partition, a macro-dataflow model can be defined at the
some implementations, the level of granularity is determined granularity of macro-actors: each macro-actor executes

, by language constructs, such as compound expressions or sequentially, but there is parallelism among macro-actors.
user-defined functions, causing the programming style to

.4 O dramatically affect multiprocessor performance. We believe A fundamental design decision in our approach is that aC that the optimal granularity should be dictated by performance mar-co eal orun tocompletion once alisinputsSmacro-actor be able to rnto cmltooneall itsipt

characteristics- specifically execution time, communication are available. This allows for non-preemptive run-time
erhead and scheduling overhead. It should represent a scheduling with no task-switching overhead. Cyclicov d ad sdependencies are thus forbidden among macro-actors. This

This work has been supported by the National Science Foundation restriction is called the convexity constraint and is discussed
under grant 4 DCR8351269 and by the Defense Research Projects in detail in Section 4.
Agency under contract 8 MDA 903-83-C-0335.

A compile-time partitioner has been implemented to process
Preprint: To be presented at the ACM program graphs in the intermediate language, IF1 [16]. IFI
Conference on Lisp & Functional Pro- represents computation as dataflow graphs, as described in
gramming 1986 Section 5. A list of target parameters (e.g. number of

processors, communication and scheduling overhead) drives
the partitioning for a given multiprocessor architecture.
Using a front-end from SISAL[Ill to IFl, we apply this
system to programs written in the single-assignment language
SISAL. However, our approach is applicable to any

Thi doc'uernnt has been approved
kcr p-blic release and sale; its
distribujon is unlimited.

of ' 87 2 6 110
% % %

environment where a dataflow graph representation of a output communication sizes. We derive lower and upper
program can be obtained, bounds on TPa(l'T) to yield F(rl), the cost function for

partition n.

2. Overylew of our approach For the lower bound, we have

Our approach is to partition each function into subgraphs at an Tp.,fl) > T(r) (1)
optimal intermediate granularity, dictated by the partition cost

*F(H). The three basic steps in this process are: since the critical path length is the (optimal) parallel
execution time on an unbounded number of processors. Also

1. Cost Assignment: Traverse the program graph and
assign execution time costs to nodes and Tpar(T) > TW(fl"iP (2)
communication size costs to edges.

2. Graph Partitioning: Partition each function's program since there are only P processors available for parallel

graph into subgraphs. execution. Combining (1) and (2) gives us

3. Code Generation: Generate sequential code for each Tr(U) ; m T,(MIP) (3)
subgraph in the partition.

These phases are described in later sections. We begin by To establish an upper bound, we have to assume that the

discussing the analytical model used to derive F(Hl), and the run-time scheduler will not be unnecessarily inefficient.

convexity constraint. More precisely, we assume that the scheduler always satisfies
a request from a free processor if there are any macro-actors
ready for execution. Many scheduling algorithms (e.g. list

3. Analytical Model scheduling) have this property. Graham [7] has proved a

We present a simple performance model for the concurrent general upper bound for the parallel execution time under

execution of a functional program partitioned into macro- these conditions. The following result is a direct consequence

actors. Define of his proof:

. P = number of processors, Tpr(l) < TrUt(rl) + Tto,(')/P (4)

" TUm = sequential execution time of the program =Tpr(l) < 2 x max(TjT(). T,(/P) (5)
(excluding overhead),

" T (l) = parallel execution time of the program for (3) and (5) provide tight lower and upper bounds on Tp.r(H)
pMtition I (including overhead), that are within a constant factor of 2 from each other. To

* T,,it(l) = critical path length of the program with express these bounds in terms of compile-time values, we
partition 171; this is the parallel execution time on an write A4-*S if macro-actor A is a dynamic invocation of
unbounded number of processors, subgraph S. and define:

" Tched = constant overhead for scheduling a macro-
actor. e f(S) = execution frequency of S; the number of macro-

actors A with A4-*S,
For each macro-actor A executed in the program, define e T(S) = XA.s T(A) / f(S)

*T(A) - execution time of A (excluding overhead) so is the average execution time for subgraph S, so that0 T() 5eef(ontie)fA exluiT(S)hed)s
that ZA T(A) - T= . ES f(S) x T(S) - T,

* Ti.(A) = input communication overhead of A, * O(S) = A.S O(A) / f(S)
is the average overhead for subgraph S.

* To(A) = output communication overhead of A,

O(A) = Th d + Ti(A) + To,(A) Now rewrite Ttotafl) as
is the total overhead for macro-actor A,• Tta~l') = :^ TA) +O(A)Tteta(l') =

EA T(A) + O(A)
o T,.(l) - ZA T(A) + 0(A)

is the total execution time, including overhead, over all = Tq . + EA 0(A)
macro-actors in the partitioned program. = Taq x (1 + Zs f(S) (S)/ Teq

Program execution proceeds by executing a ready macro- Finally, define

actor on a free processor. The total execution time for macro- F(I') = maxTc,('l)xP/T3eq, 1 + ES f(S) x O(S) / T")
actor A is assumed to be O(A) + T(A). This analysis ignores

run-time variation in the overhead term, O(A), related to the so that (3) and (5) can be combined to give

load on scheduling and communication resources. Instead F(I') x (Tq/P) < Tp,(1l) < 2 x F(17) x (Tgeq/P) (6)
Thhd is the average scheduling overhead and Tin(A). Tot,(A)
are average communication overhead values for A's input and For a given partition 11, the value of TP(l'l) can vary by at

most a factor of 2. This is a bound on performance new macro-actor. It requires a run-time system that can
improvement due to enhancements in the run-time scheduling efficiently schedule new macro-actors. The macro-actors
algorithm. However, there is large scope for performance should be considered as tasks that share the same address
improvement by reducing the value of F(H). F(1) can vary space, rather than as separate processes.
widely as we consider different partitions. By definition, Another advantage of this approach is that it greatly simplifies
F() will never be less than 1, so we'd like to make F(I) as Anor advery. hen approauh is ditcgreat smplyclos to as ossileerror recovery. When a failure is discovered, it is only

necessary to recompute the macro-actor that was executing on
F(fl) nicely expresses the trade-off between parallelism and the failed processor. Since its outputs only depend on its
overhead. If the partition is too fine, the overhead term, inputs, no interaction with any other macro-actors is
Z f(S) x O(S), will be large causing F(Hl) to be large. If the necessary.
partition is too coarse, then T,t('l) will be large due to loss
of parallelism, causing F(l) to be large once again. F(l) is oIf we examine how this constraint on macro-actors translatesto a constraint on the corresponding subgraphs of an acyclic
minimized at an optimal intermediate granularity. dataflow graph, then this condition is more appropriately

The problem of finding the partition with the lowest F(f7) is called the convexity constraint. A subgraph H of graph G is
NP-complete in the strong sense. It is in NP because the said to be convex [12] if any path P(ab) where a, b e H, is
value of F(ll) can be computed in polynomial time. It is completely contained in H. This is analogous to convex
strongly NP-complete because the 3-PARTITION problem geometrical figures that must completely contain all straight
can be reduced to it. The 3-PARTITION problem [4] is to line paths between any two internal points. A convex
partition a set, A, of 3m elements with sizes s(a), partition is one in'which all subgraphs are convex. It is easy
B/4 < s(a) < B/2 and Is(a) = mB, into m disjoint sets A1 ... 0 to see that requiring inter-subgraph edges to be acyclic is
Am so that Z1aAi s(a) = B. This requires that each Ai contain equivalent to requiring that the partition be convex. Two
exactly 3 elements from A. To reduce the 3-PARTITION trivial convex partitions of a directed acyclic graph are:
problem to the problem to the problem of minimizing F(Hl), 1. The partition that puts each vertex in a separate
we build a program graph consisting of 3m nodes and no subgraph.
edges. Node a is given execution time s(a). We stipulate that 2. The partition that puts all the vertices in the sIme
each node is executed exactly once, so that f(S) = 1 for all subgraph.
subgraphs. Setting Thd = B, makes 0(S) = B for all
subgraphs, because there is no communication overhead. We
can now solve the 3-PARTITION problem by finding a 5. IF1 Program Graphs

h program partition with the smallest F(IH), on m processors. Our compilation system operates on a graphical
The optimal value of F(17) is 2, and will only be achieved if representation of programs, namely IF1 [161. IF is an
the program partition satisfies the conditions of the 3- intermediate form for applicative languages. It is strongly
PARTITION problem. based on the features of single-assignment languages such as

SISAL [Il and VAL [I].
Since the problem of finding the optimal partition is
intractable, we 'have developed an efficient approximation
algorithm to find a partition that's close to optimal. This Compound Node Subgraphs

*algorithm is discussed in Section 7.
Select Selector, Alternatives
TagCase Alternatives (for Union)

4. Convexity Constraint Forall Generator, Body, Results
As mentioned in the introduction, our system for compile- While, Until lnit, Test, Body, Returns
time partitioning and run-time scheduling is based on the
premise that there are no cyclic dependencies among macro-
actors. This allows a macro-actor to uninterruptedly run to
completion, once all its inputs are available. The analysis in
the previous section made this assumption as well. The main
reason for this restriction is that cyclic dependencies between An IFI program is a hierarchy of acyclic dataflow graphs [3];
macro-actors can deteriorate performance by excessive task- the nodes denote operations and the edges carry data. Nodes
switching. In our system, task-switching overhead is made are either simple or compound. A simple node's outputs are
explicit by considering each switch to be the execution of a direct functions of its inputs. IF1 has about 50 simple nodes,

e.g. Plus, ArrayCatenate, FunctionCall. A compound node connect a compound node to its child graphs and implicitly

contains subgraphs and its outputs depend on the interaction define data and control dependencies to generate the

between these subgraphs. Figure 5-1 lists the five compound compound node's outputs from the outputs of the child
nodes available in IFI. graphs, e.g. for the Select, the output of the Condition graph is

Nodes have numbered ports connected by edges. An edge used to determine whether the True or False graph should be

contains the node and port numbers of its producer and used to produce the Select's outputs. This graph hierarchy
can be arbitrarily deep, reflecting the nesting of compound

consumer. It also contains an optional type number, which is
used for strongly typed languages like SISAL Literals are

special edges used for constant values. A literal has no Data

producer - its value is given by a string. All data is carried by

edges. No variables or memory locations are used. TheFAS
dataflow edges in an IFI program explicitly represent data FUNCTION S GAPH

GRAPH- R PH

dependencies, whereas the compound nodes and the function Da a

call node implicitly contain control dependencies. The run- ND

time scheduler must take both kinds of dependencies into COoutput
account when scheduling macro-actors. GRAPHData

Basic types include boolean, character, integer, real and TRUE Output

double. Arrays, streams, records and unions are used to GRAPH Data

construct more complex types. Arrays are dynamically AnaySize "SPLIT,
extendible. Nodes and edges in IF1 can have pragmas to
carry additional information. We use pragmas to store

profile-based frequency counts, communication and Call

computation costs and graph partitions.

The hierarchical structure of IF1 programs is due to the fact "QUICKSORT
that graphs can contain compound nodes, which themselves

contain graphs. For example, Figure 5-2 shows the Quicksort Call
program written in SISAL and Figure 5-3 shows the
corresponding IFI graph hierarchy for function Quicksort.

type Info - array(integerj ArrayCatenate

function Split (Data:Info returna Info, Info, Info)
for E in Data

array of E when £ < Data(l] "QUICKSORT"
array of E when E - Data(1l

array of E when E > Data[l1
and for

end function Call

function Quilcksort(Data:Info zetu@ne Info)
if arraysize(Data) > 1 then

let
L, Middle, R :- Split (Data) a

In
Quicksort (L) I IMlddleI IQuicksort (R)

end lot
elm.

Data Output
end if

end function

FIgure 5-3: IFI graph hierarchy for function Quicksort
Figure 5-2: SISAL program for Quicksort

Figure 5-3 shows individual graphs enclosed in boxes. The

graph for function Quicksort is at the top level. It contains 6. Cost Assignment

exactly one Slect compound node, which has Condition, The first step in compile-time partitioning is to estimate
True and False graphs. The solid edges connect nodes in a computation and communication costs in the program.
graph and represent data dependencies. Stippled lines Communication costs arc determined by examining the data

...

type of an edge and assessing its size in an appropriate unit history.
(e.g. bytes). Estimation of node execution times is more 3. Pick the subgraph with the largest value of f(S)xO(S)
difficult and is undecidable in general. The unknown as the "best" subgraph, B, for merging. Do step 6 if B
parameters ire: is a complete IF1 graph; otherwise do steps 4 and 5.

4. Examine the other subgraphs in B's IFI graph as
" The dynamic frequency distribution of subgraphs in a candidates for merging. For each candidate, C,

compound node (e.g. number of iterations for a While compute F(n) for the partition obtained by merging all
Body, probability distribution of Alternatives in a subgraphs in the convex hull of B and C.
Select) 5. Pick the candidate, C, with the lowest value of F(f') in

* Array size for nodes that operate on entire arrays. This step 4. Update the partition by merging all subgraphs
parameter is also used to determine the array's in the convex hull of B and C, and go back to step 3.
communication size. 6. B is a complete IFI graph. Let P be its parent

* Recursion depth for recursive function calls. compound node. Merge B with all subgraphs in P to
get a subgraph that contains all of P. There is no

Average node execution times are determined by using choice of candidates in this case, as there is only one
average values for these frequency parameters. These way to merge B. Go back to step 3 after the partition
frequency values can be estimated using simple rules of has been updated.
thumb, can be provided by the programmer through pragmas, 7. Use the cost history to identify the iteration with the
or can be derived from profile information. Our current best partition.

implementation uses profile data. 8. Reconstruct the best partition.

Given these parameters, it is a straightforward task to Generally, the overhead term a decreases as the partition

compute the cost of a node from the cost of its components becomes coarser. The critical path term 0 may decrease
via a depth-first traversal of the program graph. The cost of a initially due to reduced overhead, but will eventually increase
function call is determined by the cost assigned to the callee. due to loss of parallelism. Since a = I + Esf(S)xO(S)Ieq,
The strongly connected components (SCC's) in the call graph and we want to minimize max(a, 0), the subgraph with the
reveal groups of mutually recursive functions. The recursion largest value of f(S)xO(S), i.e. the largest overhead for

depth estimate is used to evaluate the costs of functions in the parallel execution, is selected for merging in step 3. All other
same SCC. The reduced inter-SCC graph is acyclic and is subgraphs in the same IFI graph arc examined as candidates

traversed in topological order so that the callee's costs are to merge with the selected subgraph in step 4. The candidate

assigned before processing the caller. that yields the merged partition with lowest cost is chosen in
step 5.

7. Partitioning Algorithm When merging two subgraphs, the convexity constraint
requires that all subgraphs in their convex hull be merged as

An IFI program is partitioned on a function by function basis. el el ues those subgraphs t lie on

As in cost assignment, the strongly connected components in
* any inter-subgraph path between the original pair. Mcrging

the call graph are processed in a topological order. This all subgraph fthet e n th at the Merged

ensures that the callee will always be partitioned before the a rtiio wl e convex

caller, for any non-recursive function call.

Subgraphs are merged till the end, even when F(IT) increases,For each function, the partitioner attempts to minimize t vi en rpe nalclmnmmo ()(e
F~n). ma~ctp), her (se Setion3):to avoid being trapped in a local minimum of F(I' (see

F(fl) =max(a,[3), where (see Section 3): Figure 7-1). The partition chosen by the algorithm has the

Sca = 1 I+ Es f(S) x O(S) / Te q smallest F(H) over all iterations, though not necessarily the
* 3= Tnt([l) x P / Te q optimal value. The extra number of merging iterations

'p beyond the first minimum does not alter the worst case
For a given program with costs and frequency information, exon te ft aihm .

the only parameters that can vary in a and 0, when the

partition l changes, are O(S) and Tent(H). These values are As explained in Section 5, an IF function is a hierarchy of
incrementally updated by the partitioner. The general dataflow graphs, due to the presence of compound nodes. In
structure of the partitioning algorithm is: the initial partition, all compound nodes are expanded and all

1. Start with the finest granularity partition that places the partition's subgraphs are at the lowest level. Merging
each node in a separate subgraph. continues at the same level till a subgraph chosen for merging

2. Repeat steps 3 to 6 till no further merging is possible, is the entire graph of a compound node. This subgraph will
i.e. the entire function has been included in one then be merged with the compound node's other graphs to
subgraph. Store F(n) for each iteration as a cost become a subgraph containing the compound node in the

63j

parent graph (step 6).

A function call may contain parallelism due to the callee's 20 -
partition, or may execute sequentially. The decision to 19
parallefize or sequentialize a function call is automatically i18

17 -
made by the partitioning algorithm. The execution time and 16
overhead cost of a function call are initialized to the values 15
obtained from the callee's partition. If a function call remains 14

in a subgraph by itself, then it will run in parallel. This 12
creates macro-actors for the callee's subgraphs at run-time. If 11
the call is merged with other nodes, then the call will be 10

executed sequentially and the sequential execution time and 8
overhead are used in computing the costs and overhead of its 7
subgraph. Generally, calls to small functions execute 6

sequentially and calls to large functions are parallelized. 4
Other factors may also play a role. For instance, a call with a 3
large communication overhead for the input parameters may 1 I I I I I I I I I I I
be better executed sequentially. In another case, it may be 12 4 5 St 7 , 101112
more efficient to merge a low frequency call with other nodes, Number of Iterations in Partitioning Algorithm
while keeping a high frequency call, to the same function, in a

subgraph by itself. Executable code for both sequential and
parallel versions must be available at run-time, if a function is Figure 7-1: Sample variation in F(H)
called both sequentially and in parallel.

In-line expansion of function calls can provide more A rudimentary worst case execution time analysis for this

flexibility in their partitioning. The major constraint is code algorithm now follows. Define:
size, which grows exponentially in the worst case. The IFI e M = the largest number of nodes in a single IFI graph,
system has a function integration program that serves as an * E - the largest number of edges in a single IFI graph
optional pre-pass to our partitioner. The preceding discussion (note that E = O(M2)),
of partitioning function calls only applies to calls that were * N = the total number of nodes over all IFl graphs in the
not expanded in-line, function,

. L = number of levels in the function's graph hierarchy.
The target multiprocessor parameters used by the partitioning Realistic benchmark programs show values of N and M in thealgorithm to compute F(H1) are: Raitcbnhakporm hwvle fNadMi h

ranges 500-2000 and 20-50 respectively. This suggests an
" Number of processors, P. M = 4N relation between M and N, which is justified when
" Scheduling overhead for a macro-actor, Th d. the number of graphs is comparable to the size of each graph.
" Input and output communication overhead functions, We also assume that the graph hierarchy is reasonably

Ti,(S) and Tou(S). balanced so that L - O(log N).
The overhead terms are used to compute The total number of merge iterations is O(N), since at most

(S) - T.,W + T1 (S) + TuS). So far, we have used N-I merges can be performed before the entire function is
communication overhead functions of the form included in a single subgraph. A heap indexed by f(S)xO(S)
K x (Communication Size), where K is a communication is used in step 3 to efficiently pick the "best" subgraph,
factor that converts input/output communication size toexecution time units. B. The total execution time for O(N) insertions and deletions

in the heap is O(N log N).
Figure 7-1 shows the variation in F(rI) with the number of There are 0(M) candidates for the second subgraph .n step 4.
merging steps, while partitioning a function from the SIMPLE The complete inter-subgraph path relation (transitive closure
benchmark. The target parameters used were:

of inter-subgraph edges) is first computed in O(M(M+E))
* Number of processors, P - 10. time. For each of the O(M) candidate subgraphs,
* Scheduling overhead, Ttched , 100 cycles. 1. The convex hull with B is computed in O(M) time
* Communication overhead factor, K - I cycle per byte. using the path relation.

The function itself had T., = 1.1 x 10 cycles. 2. The new overhead cost (new value of a) is computed

Z.,* m~I *!

in O(M) time, by evaluating f(S)xO(S) for the convex simple nodes executed within a macro-actor. Communication
hull. sizes are derived from actual run-time values - this is

3. The critical path length of a single graph can be particularly important for dynamic arrays. A target
computed in O(M+E) time. To recompute Tcit(H(), multiprocessor parameter is used to convert communication
the critical path length of all enclosing graphs may size (in bytes) to overhead time (in machine cycles). 'Me
need to be recomputed, taking O(L(M+E)) time in the
worst case. scheduling overhead for a macro-actor (defined as Tsct in

Putting it all together, it takes 0(ML(M+E)) time to pick the Section 3) is also a parameter of the target multiprocessor.

best candidate in step 4. Updating the partition in step 5 just Figure 9-1 on the next page shows the speed-up obtained for
takes O(L(M+E)) time. SIMPLE, a benchmark program for computational fluid

dynamics and heat flow [6]. The basic data structure is a twoStep 6 takes 0(L(M+E)) time, since there is only one way to

merge B. Only the values of a and P have to be updated. So dimensional mesh covering the problem domain. Each
the entire algorithm takes O(NlogN + NML(M+E)) time. iteration of the program's outer loop represents one time step,Assuming M the entire algoEth t O(g ad NL(MEN) tme. which consists of a hydrodynamics pass and a heat
this an O(N2 5 log N) algorithm) conduction pass. Our results are for a lNxlO mesh and a

single time step. We expect to see better speed-up for a larger

mesh size.

8. Code Generation Issues The curves in Figure 9-1 illustrate the match between a
Each node in the IF1 program produced by the partitioner is compile-time partition and the corresponding target
annotated with a pragma value to indicate its subgraph. An multiprocessor parameters. Note that both axes are plotted on
entire subgraph is compiled to sequential code. The a logarithmic scale. The measurements were taken for two
partitioner imposes no restrictions on the ordering of nodes sets of parameters:
within a subgraph. 1. Low overhead -Te = 10 cycles and zero

The IFI program graph representation is well suited to communication overhead.
compile-time partitioning. However, generation of sequential 2. High overhead - Tched = 100 cycles and K = I cycle

machine code is more complicated than from traditional, per byte.

sequential intermediate languages. It is imperative to avoid The four curves show all combinations of the two partitions
unnecessary copying when an update-in-place is possible. simulated on the two targets. Naturally, the low overhead
This effectively coalesces data on input and output edges to target curves show a better speed-up than the high overhead
be the same "variable". A few research projects are under target curves. But, for a given target, the partition that was
way to address this problem. The SISAL[11] project generated for it performcd better than the other partition. This
includes code generation from IFl for the VAX 780 and is more significant in the presence of high overhead.
Cray-2 architectures. A project is under way at Stanford to
translate SAL [2] graphs (similar to IFI) to U-code [15]. Our
partitioner will benefit from all advances in this field, as 10. Related Work

sequential code generation and optinization techniques can The general problem of determining the optimal granularity of
be applied to the code within a subgraph. program decomposition has been addressed in other work.

Gaudiot and Ercegovac [5] present a mean-value model of
variable resolution daaflow. They illustrate the phenomenon

9. Preliminary results of an optimal resolution that minimizes parallel execution
The partitioning algorithm described in the Section 7 has been time. Since it is a mean-value analysis, it does not apply to a
implemented to partition IFI [16 program graphs. A SISAL particular program with a given assignment of execution
I Il] to IFI front-end allows us to test the performance of our times and communication sizes. Instead it describes the
partitioner on programs written in the single-assignment average performance of all programs, for a given macro-actor
language, SISAL. We have instrumented the Livermore IFI size. Also, they do not address the compiler issue of actually
interpreter to obtain statistics for a multiprocessor simulation partitioning the program to achieve a desired resolution.

"P including scheduling and communication overhead.
Hudak and Goldberg [10] introduce serial combinators to

The simulator was carefully designed to accurately represent a achieve an "optimal" granularity in graph reduction. Our
multiprocessor execution. Macro-actors are assigned to work is similar in spirit to theirs. An important difference is
processors in a breadth-first evaluation of the program. that their serial combinators require the facility of process
Execution time is accumulated by adding the costs of all suspension and re-activation. As explained in Section 4, we

@44
...... , . .,, - ,

o. 100.0 0 Low overhead partition - low overhead target
,? 0 High overhead partition - low overhead targeto High overhead partition- high overhead target

0 x Low overhead partition - high overhead target

10.0

1.0

10 100

Number of Processors, P
Figure 9-1: Speed-up vs. Number of processors for SIMPLE

ensure that our macro-actors can run to completion once Our lower and upper bound analysis of parallel execution
they've been scheduled. No preemption is necessary during a time provides an objective function to evaluate a partition at
macro-actor's execution. Another difference is that the serial compile-ime.
combinators described in [101 are restricted to not contain any The implementation has already been used to partition many
concurrent substructure. In our case, macro-actors may
contain compound expressions and function calls even though small benchmark programsthee cmpuatins avepotntil pralelim. he ounaryvery encouraging. As more large benchmark programs
these computations have potential parallelism. The boundary become available, we will use this implementation as a basis
is determined entirely by costs for communication overhead
and execution time. to compare alternative architectures and their interaction with

different applications.

In the Stardust system [9, both partitioning and scheduling References
are performed at run-time. Functions are annotated with

integer valued expressions that compute execution time 1. Ackerman, W. B. & Dennis, J. B. VAL - a value-oriented
estimates at run-time (e.g. N log N for Quicksort). algorithmic language. Preliminary reference manual.

MIT/LCSITR-218, Laboratory for Computer Science, MIT,
Partitioning is based on a maximum size, causing expressions June, 1979.
with larger execution time estimates to be decomposed. The 2. Celoni, J. R. & Hennessy, J. L. SAL: A Single-
advantage of run-time partitioning is in the use of more Assignment Language for Parallel Algorithms.
accurate execution time estimates determined by input data at ClaSSiC-83-0, Center for Large Scale Scientific
run-time. The major disadvantage is that partitioning now Computation, Stanford University, Sept., 1983.
becomes an extra overhead in multiprocessor performance. 3. Davis, A. L & Keller, R. M. "Data Flow Program
Also, the total overhead of run-time partitioning is a function Graphs". IEEE Computer 15, (Feb. 1982).
of the program's dynamic execution time, rather than its static 4. Garey, M. R. and Johnson, D. S.. COMPUTERS AND
code size. Both these factors make it mandatory for the INTRACTABILITY A Guide to the Theory of
partitioning algorithm to be very simple. Stardust's approach NP-Completeness. W. H. Freeman and Company, San
of a maximum size avoids sequentialization at a coarse Francisco, 1979.

granularity, but can incur a large overhead due to fine 5. Gaudiot, J. J. & Ercegovac, M. D. Performance Analysis
granularity execution, of a Data-flow computer with Variable Resolution Actors.

Proc. 4th lnt Conf Dist Comp Sys, 1984, pp. 2-9.
In [131, we present an approach to compile-time scheduling 6. Gilbert, E. J. An Investigation of the Partitioning of
intended for applications with fairly predictable run-time Algorithms Across an MIMD Computing System. Technical
behavior. An IFI program is partitioned into P sequential Note No. 176, Computer Systems Laboratory, Stanford
threads for P processors. There is no overhead due to run- University, 1980.
time scheduling; all inter-processor synchronization and 7. Graham, R. L. "Bounds on Multiprocessing Timing
communication is directly compiled in the code. The Anomalies". SIAM J. Appl. Math. 17, 2 (March 1969).
compile-time scheduling approach operates on the same IFI 8. Gurd, J. R., Kirkham, C. C. & Watson, I. "The
program graph representation, annotated with costs, that was Manchester Prototype Dataflow Computer". CACM 28, 1
described in this paper. We expect compile. time scheduling (Jan. 1985).
to be effective for a smaller class of progranis than compile- 9. Hornig, D. A. Automatic Partitioning and Scheduling on a
time partitioning and run-time scheduling, but to be more Network ofPersonal Computers. Ph.D. Th., Carnegie-Mellon
efficient for that class. University, Nov. 1984.

10. Hudak, P. & Goldberg, B. Serial Combinators:
"Optimal" Grains of Parallelism. Proc. Functional11. Conclusions Programming Languages and Computer Architecture, Nancy,

We have demonstrated that the problem of partitioning France, Sept., 1985, pp. 382-399.
functional programs at an "optimal" granularity can be solved 11. McGraw, J. et al. SISAL Streams and Iteration in a
at compile-time. Our approach is practical and has been Single Assignment Language, Language Reference Manual,

Version 1.2. M-146, LLNL, March, 1985.
implemented to process IF I program graphs.

12. Pfaltz, J. L.. Computer Data Structures. McGraw-Hill,
The partitioner does not assume any particular multiprocessor Inc., 1977.
architecture. Instead, it is driven by a list of parameters that 13. Sarkar, V. & Hennessy, J. L. Compile-time Partitioning
describe the target multiprocessor. and Scheduling of Parallel Programs. Proc. SIGPLAN '86

The convexity constraint is an important design decision for Symposium on Compiler Construction, 1986.
efficient run-time scheduling and improved error recovery.

', ","9',;, " '"

14. Shapiro, E. Y. A Subset of Concurrent Prolog and Its
Interpreter. TR-003, The Weizmann Institute of Science,
Israel, Feb., 1983.

15. Sites, R. et al. Machine-independent Pascal Optimizer
Project Final Report. UCSD/CS-79/038, University of
California at San Diego, Nov., 1979.

16. Skedzielewski, S. & Glauert, J. IFI - An Intermediate
Form for Applicative Languages, Version 1.0. M-170,
LLNL, July, 1985.

17. Turner, D. A. "A new implementation technique for
applicative languages". Software -- Practice and Experience
9 (1979), 31-49.

.4,,,..l 'F i~

4,,..

- F

- -. r.

N
V

1

'I

I

J

I,

'~' ~ C- ~

